#我们为了减小过拟合,也就是死记硬背不能达到学习的目的,我们加入惩罚项,使其不能死记硬背 #将原来的训练目标:最小化训练标签上的预测损失,调整为最小化预测损失和惩罚项之和。 #we take L2 norm as the penalty term. If the weight vector increases largely, our learning algorithm will more #concentrate on minimizing weight norm ||w||^2. #more details we will make up in the future.
4.5.2 high-dimension linear regression
1 2 3 4
%matplotlib inline import torch from torch import nn from d2l import torch as d2l
1 2 3 4 5 6 7 8 9 10 11
#firstly we generate some data like previously, with x just one order. #y = 0.05 + sigma(i=1, d, 0.01x_i) + epsilon, and epsilon satisfying N(0, 0.01), namely Gauss noise # for more explicit fitting result, the dimension of problem can be increased to d=200., samples=20 n_train, n_test, num_inputs, batch_size = 20, 100, 200, 5 true_w, true_b = torch.ones((num_inputs, 1)) * 0.01, 0.05#也就是w是0.01的列向量,行数为输入维度200,很正常because we will #calculate XW train_data = d2l.synthetic_data(true_w, true_b, n_train)#generate data, return X with num_inputs rows and y with num_inputs rows #注意这里生成的是normal distribution的数据矩阵。 train_iter = d2l.load_array(train_data, batch_size)#也就是分批加载器 test_data = d2l.synthetic_data(true_w, true_b, n_test) test_iter = d2l.load_array(test_data, batch_size, is_train=False)
4.5.3 start from zero
1
#we just need add the penalty term to the origin target function.
1. Initialize model parameters
1 2 3 4
definit_params(): w = torch.normal(0, 1, size=(num_inputs, 1), requires_grad = True) b = torch.zeros(1, requires_grad=True) return [w, b]
2. define L2 norm penalty
1 2
defl2_penalty(w): return torch.sum(w.pow(2)) / 2
3.define training code realization
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
#because from chapter 3, the linear network and square loss are not changed, so we directly use integrated functions about them. deftrain(lambd): w, b = init_params() net, loss = lambda X: d2l.linreg(X, w, b), d2l.squared_loss#lambda相当于创建函数 num_epochs, lr = 100, 0.003 animator = d2l.Animator(xlabel='epochs', ylabel='loss', yscale='log', xlim=[5, num_epochs], legend=['train', 'test']) for epoch inrange(num_epochs): for X, y in train_iter: #增加了L2 penalty term, and boardcasting make l2_penalty(w) become a vector with length batch_size l = loss(net(X), y) + lambd * l2_penalty(w)#因为最后y结果出来是batch_size, 1的向量 l.sum().backward() d2l.sgd([w, b], lr, batch_size)#进行参数优化和更新 if(epoch + 1) % 5 == 0: animator.add(epoch + 1, (d2l.evaluate_loss(net, train_iter, loss), d2l.evaluate_loss(net, test_iter, loss))) print("w的L2范数是:", torch.norm(w).item())#item将张量转换为标量。
4. overview regularization directly training
1 2 3
#we now use lambd=0 to forbid weight reduction and then run this code. #The result is training error has decreased but testing error has not decreased, so overfitting comes into being. train(lambd=0)#为什么没有输出呢
w的L2范数是: 13.45615291595459
5. Using weight reduction
1 2
#There, training error has increased but testing error has decreased, it's our desired results. train(lambd=3)
#由于更新的权重衰减部分仅依赖每个参数的当前值,因此优化器必须至少接触每个参数一次。 # #我们在instance优化器时,直接通过weight_decay指定weight decay hyper params. #In default, PyTorch reduce weight and bias samutaneously deftrain_concise(wd): net = nn.Sequential(nn.Linear(num_inputs, 1)) for param in net.parameters(): param.data.normal_() loss = nn.MSELoss(reduction='none')# preserver the sample-level loss, not summing or meaning them. num_epochs, lr = 100, 0.003 #偏置参数没有衰减 trainer = torch.optim.SGD([{"params": net[0].weight, 'weight_decay': wd},#也就是加入了权重衰减, wd是权重衰减系数 {"params": net[0].bias}], lr=lr) #create a optimizer using sGD algorithm animator = d2l.Animator(xlabel='epochs', ylabel='loss', yscale='log', xlim=[5, num_epochs], legend=['train', 'test']) for epoch inrange(num_epochs): for X, y in train_iter: trainer.zero_grad()#梯度清零 l = loss(net(X), y) l.mean().backward() trainer.step() if (epoch + 1) % 5 == 0: animator.add(epoch + 1, (d2l.evaluate_loss(net, train_iter, loss), d2l.evaluate_loss(net, test_iter, loss))) print('w的L2范数:', net[0].weight.norm().item())
1
train_concise(0)
w的L2范数: 14.142910957336426
1
train_concise(3)
w的L2范数: 0.6731933355331421
1 2 3 4 5
#conclusion: regularization is a common method to tackle overfitting: we add the penalty term in the loss function of #training sets, in order to reduce complexity of learned model.
#a special choice is L2 punishing weight reduction, which will cause that learning algorithm updates the weight reduction #in the step.